35 research outputs found

    Factor XIII improves platelet adhesion to fibrinogen by protein disulfide isomerase-mediated activity

    Get PDF
    BACKGROUND Factor XIII (FXIII), a plasma pro-transglutaminase, consists of two A subunits and two B subunits (FXIIIA2B2). Following activation by thrombin, it cross-links fibrin chains at the final step of coagulation. We previously reported that FXIII subunit A (FXIIIA) serves as a protein disulfide isomerase (PDI), and that PDI promotes platelet adhesion and aggregation. OBJECTIVE This study sought to examine possible mechanistic effect of FXIII on platelet adhesion to fibrinogen; specifically, the role of its PDI activity. METHODS Ex vivo experiments: Blood platelets derived from five patients with hereditary FXIIIA deficiency before and after treatment with Fibrogammin-P (FXIIIA2B2 concentrate) were washed and incubated on immobilized fibrinogen. Bound platelets were stained and counted by microscopy. In vitro experiments: Platelets derived from patients before treatment and five healthy controls were washed and analyzed for adhesion in the presence or absence of Fibrogammin-P or recombinant FXIII (FXIIIA2 concentrate). RESULTS In ex vivo experiments, one hour after Fibrogammin-P treatment, mean (±SEM) platelet adhesion to fibrinogen increased by 27±2.32% (p<0.001). In in vitro experiments, treatment with Fibrogammin-P or recombinant FXIII (10IU/mL each) enhanced platelet adhesion to fibrinogen (in patients, by 29.95±6.7% and 29.05±5.3%, respectively; in controls, by 26.06±3.24% and 26.91±4.72, respectively; p<0.04 for all). Iodoacetamide-treated FXIII (I-FXIII), where transglutaminase activity is blocked, showed similar enhanced adhesion as untreated FXIII. By contrast, addition of an antibody that specifically blocks FXIIIA-PDI activity inhibited FXIII-mediated platelet adhesion to fibrinogen by 65%. CONCLUSION These findings indicate that FXIII-induced enhancement of platelet adhesion is mediated by FXIII-PDI activity

    Recombinant FXIII (rFXIII-A(2)) Prophylaxis Prevents Bleeding and Allows for Surgery in Patients with Congenital FXIII A-Subunit Deficiency

    Get PDF
    Recombinant factor XIII-A(2) (rFXIII-A(2)) was developed for prophylaxis and treatment of bleeds in patients with congenital FXIII A-subunit deficiency.mentor (TM) 2 (NCT00978380), a multinational, open-label, single-arm, multiple-dosing extension to the pivotal mentor (TM) 1 trial, assessed long-term safety and efficacy of rFXIII-A(2) prophylaxis in eligible patients (patients with severe [= 6 years. Patients received 35IU/kgrFXIII-A(2) (exactdosing) every 28 +/- 2 days for >= 52 weeks. Primary endpoint was safety (adverse events including immunogenicity); secondary endpoints were rate of bleeds requiring FXIII treatment, haemostatic response after one 35 IU/kg rFXIII-A(2) dose for breakthrough bleeds and withdrawals due to lack of rFXIII-A(2) efficacy. Steady-state pharmacokinetic variables were also summarized. Elective surgery was permitted during the treatment period. Sixty patients were exposed to rFXIII-A(2); their median age was 26.0 years (range: 7.0-77.0). rFXIII-A(2) was well tolerated without any safety concerns. No non-neutralizing or neutralizing antibodies (inhibitors) against FXIII were detected. Mean annualized bleeding rate (ABR) was 0.043/patient-year. Mean spontaneous ABR was 0.011/patient-year. No patients withdrew due to lack of efficacy. Geometric mean FXIII trough levelwas 0.17 IU/mL. Geometric terminal half-life was 13.7 days. rFXIII-A(2) prophylaxis provided sufficient haemostatic coverage for 12 minor surgeries without the need for additional FXIII therapy; eight procedures were performed within 7 days of the patient's last scheduled rFXIII-A(2) dose, and four were performed 10 to 21 days after the last dose.Peer reviewe

    Disparate Impact of Butyroyloxymethyl Diethylphosphate (AN-7), a Histone Deacetylase Inhibitor, and Doxorubicin in Mice Bearing a Mammary Tumor

    Get PDF
    The histone deacetylase inhibitor (HDACI) butyroyloxymethyl diethylphosphate (AN-7) synergizes the cytotoxic effect of doxorubicin (Dox) and anti-HER2 on mammary carcinoma cells while protecting normal cells against their insults. This study investigated the concomitant changes occurring in heart tissue and tumors of mice bearing a subcutaneous 4T1 mammary tumor following treatment with AN-7, Dox, or their combination. Dox or AN-7 alone led to inhibition of both tumor growth and lung metastases, whereas their combination significantly increased their anticancer efficacy and attenuated Dox- toxicity. Molecular analysis revealed that treatment with Dox, AN-7, and to a greater degree, AN-7 together with Dox increased tumor levels of ÎłH2AX, the marker for DNA double-strand breaks and decreased the expression of Rad51, a protein needed for DNA repair. These events culminated in increased apoptosis, manifested by the appearance of cytochrome-c in the cytosol. In the myocardium, Dox-induced cardiomyopathy was associated with an increase in ÎłH2AX expression and a reduction in Rad51 and MRE11 expression and increased apoptosis. The addition of AN-7 to the Dox treatment protected the heart from Dox insults as was manifested by a decrease in ÎłH2AX levels, an increase in Rad51 and MRE11 expression, and a diminution of cytochrome-c release. Tumor fibrosis was high in untreated mice but diminished in Dox- and AN-7-treated mice and was almost abrogated in AN-7+Dox-treated mice. By contrast, in the myocardium, Dox alone induced a dramatic increase in fibrosis, and AN7+Dox attenuated it. The high expression levels of c-Kit, Ki-67, c-Myc, lo-FGF, and VEGF in 4T1 tumors were significantly reduced by Dox or AN-7 and further attenuated by AN-7+Dox. In the myocardium, Dox suppressed these markers, whereas AN-7+Dox restored their expression. In conclusion, the combination of AN-7 and Dox results in two beneficial effects, improved anticancer efficacy and cardioprotection

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    Missense Mutation in Pseudouridine Synthase 1 (PUS1) Causes Mitochondrial Myopathy and Sideroblastic Anemia (MLASA)

    No full text
    Mitochondrial myopathy and sideroblastic anemia (MLASA) is a rare, autosomal recessive oxidative phosphorylation disorder specific to skeletal muscle and bone marrow. Linkage analysis and homozygosity testing of two families with MLASA localized the candidate region to 1.2 Mb on 12q24.33. Sequence analysis of each of the six known genes in this region, as well as four putative genes with expression in bone marrow or muscle, identified a homozygous missense mutation in the pseudouridine synthase 1 gene (PUS1) in all patients with MLASA from these families. The mutation is the only amino acid coding change in these 10 genes that is not a known polymorphism, and it is not found in 934 controls. The amino acid change affects a highly conserved amino acid, and appears to be in the catalytic center of the protein, PUS1p. PUS1 is widely expressed, and quantitative expression analysis of RNAs from liver, brain, heart, bone marrow, and skeletal muscle showed elevated levels of expression in skeletal muscle and brain. We propose deficient pseudouridylation of mitochondrial tRNAs as an etiology of MLASA. Identification of the pathophysiologic pathways of the mutation in these families may shed light on the tissue specificity of oxidative phosphorylation disorders
    corecore